Normal Subgroups


  1.                     HIGHER ALGEBRA


 ■  Normal Subgroups  ::-

Def :-    Let be a subgroup of a group G then H is said to be a Normal subgroup of G of aH=Ha  such that  a€G.

  ● Example :-
 1. Let H={1,-1}  & G={1,-1,i,-i} then H is a normal subgroup of G.
 Because H={1,-1} =-1+1,
           Q-1H={-1,1} =1+(-1),
                iH={-i,-i} =1+i,
               -iH={-i,i} = 1+(-1);
2. G=(Z,+), H=(2Z,+)
Then H♢G
because, a+H={a+h, h €H}
              
                         ={h+a : h €H
■■ Quotient Group ::-
 Def :- Let S={aH :a belong to G} .Where H is a normal subgroup of G. Let us defined a binary operation ○ on S by  aH○bH =abH for all aH, bH belong to S.
Then (S,○) is a group .
 ●● Because :-
 1. aH○bH=abH belong to S , where aH,bH belong to S
 ▪ S is Close with respect to '○'.
2.  aH○(bH○cH)=aH○(bc)H
                            =a (bc)H
                            =(ab)H○cH
                            =(aH○bH)○cH
• S is association in S.
 3.  eH =H & aH○H =aH○eH
                                =aeH
                                =aH
                   H○aH=eH○aH
                              =eaH
                              =aH.
• H is the identity element of S with respect to '○',








Comments